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Abstract

The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum

mechanics. We have derived the invaxiant quantity with an auxiliary equation as the classical

equation of motion. With the use of this invariant it can be determined whether or not the

system is bound. In bound system we have evaluated the exact eigenfunction and minimum

uncertainty function through unitary transformation.

1 Introduction

In recent years an extensive effort has been devoted to obtaining an exact solution for the oscillator

systems with time-dependent Hamiltonian 1) and especially dissipative system, i.e., damped free

particle 2), damped 3) or damped driven harmonic oscillator 4) and driven time-dependent harmonic

oscillator s). After Lewis and Riesenfeld _) first derived the relation between the eigenstates of the

dynamical invariant and the solution of the SchrSdinger equation, many authors have applied the

dynamical invariant method to investigate the time-dependent oscillator system. The dynamical

invariant is related directly to an auxiliary equation as the classical equation of motion for the

Hamiltonian system, which is given as nonlinear second-order differential equation. Therefore the

dynamical invariant can be determined by the particular solution to the auxiliary equation.

In this paper, employing the operator method, we derive the wave function and the minimum

uncertainty function for the quadratic Hamiltonian system which includes canonical variables with

time-dependent coefficients. Recently, we have investigated this system to obtain the wave function

and propagator through path integral method 7). In Sec. 2, we derive the dynamical invariant

from the equation of motion. We classify whether or not the system is bound in the consideration

of our system as classical system and then find the conditions for bound and unbound. In Sec. 3,

using the quantum invariant operator, we define the creation and annihilation operators and then

evaluate the wave function and propagator of our system. In Sec. 4, we introduce new creation

and annihilation operators from the old ones in Sec. 3, and evaluate eigenfunction of the unitary

transformed system and minimum uncertainty function. Finally, we give the summary in Sec. 5.
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2 The bound quadratic Hamiltonian system

The quadratic Hamiltonian of the system is given as

H = l[A(t)p2 + B(t)(pq + qp) + C(t)q 2] (1)

where p and q are canonical variables. A(t), B(t) and C(t) is continuously differentiable function

but A(t) is nonzero. The classical equation of motion can be obtained from the Hamilton's

equation of motion:

q + ((t)_l + _(t)q = 0 (2)

with

A(t)
¢(t)= A(t) (3)

A(t)B(t) B2(t)- /_2(t). (4)
_(t) = A(t)C(t) + A(t)

The general solution for Eq. (2) can not be found, but we may take the solution in the following
form:

q = p(t)e iu(t) (5)

here, p(t) and 3'(t) are the functions to be determined from Eq. (2). The functions are real and

depend only on time.

this equation as

Substitution of Eq. (5) in Eq. (2) offers the real and imaginary parts of

_ p_2+ ¢(t)_ + _(t)p = 0. (6)

and

+ 2_ + ¢(t):rp = 0.

The time invariant quantity can be found from Eq. (7) in the form:

(7)

A(t)

with auxiliary condition as the classical equation of motion, Eq. (2). With the use of Eq. (8), the

nonlinear differential equation [Eq.(6)] can be written as

b + C(t)h + _(t)p = _-_2_A2(t).
pv

(9)

We may find another classical time invariant quantity with an auxiliary equation as classical

equation of motion. We assume that this invariant quantity depends on p, q and t. Then, from

Hamilton's equation of motion, the time derivative of I(p, q, t) becomes

dI cO1 cOl OH COlCOIl

dt - Ot + COqcop COpCOq = 0. (10)

3112



Combining Eq. (10) with Eq. (1) we may obtain the time invariant quantity as

I= q +[_A_ p A(t) _ q+pp . (11)

I(q,p,t) is an invariant quantity and thus we can express it in phase space. For _ = 0, Eq. (11)

becomes a linear line in phase space and canonical variables q and p can occupy every region

in phase space. Therefore the motion of the system is unbound. On the other and, for _ _ 0,

Eq. (11) becomes ellipse in phase space because the coefficient matrix of it has positive real

eigenvalues. The canonical variables q and p can occupy some finite region in phase space, and

thus the motion of the system is bound.

3 The Wave Function, Propagator and Uncertainty Val-

ues

For quantum mechanical treatment of our system, we may replace the canonical variables with the

corresponding quantum operators in Eq. (7) and then we may also obtain the quantum invariant

operator of the system as the same form of Eq. (11).

In order to obtain the eigenfunctions and eigenvalues of the invariant operator, we define the

creation and annihilation operator, a and at with auxiliary equations, Eq. (8) and Eq. (9) as

at----2_ (A [_/-i (B-_) ] -ip}. (13)

The invariant operator [Eq. (11)] can be expressed in terms of a and a_ as

I = h" (aia + 2) . (14)

Since the a and a_ satisfy the commutation relation, the normalized eigenstates and eigenvalues

of Eq. (14) are given by

afaln >= >

The ground state must satisfy the condition that

auo = O.

Solving Eq. (17) for u0 we obtain

It 0 ---

n = 0,1,2,.-- (15)

n - 0, 1,2,... (16)

(17)

(18)
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Operating at continuously to Eq. (18) we may obtain the nth excited states:

1 ,,

= H, q e- _t['_-'(_-B)] q_ (19)

where H,_ is a nth order Hermite polynomial.

Eq. (19) is an eigenfunction of the invariant operator [Eq. (14)] with an auxiliary equation as

classical equation of motion, but is not the solution of the Schrhdinger equation;

ih-_ = z[-h2m(t)-8_q_+

Comparision of Eq. (19) with (20) offers the exact wave function of the system:

¢.(q,0 = e'_'u,,(q,t)

\--_-_] e-'("+_)_'Y,, e- rkx[;_-i(,_-s)] q_. (21)

Making use of the Mehler's formula together with Eq. (21), we can easily evaluate the propa-

gator of the system given by

;rl/2;y,1/2 1/_
K(q,t,;q',t') =

2_rih sin(7 - "I)A1/2A '1/2

x exp 2-g-2 + ;_cot(7 - 7') - B q2

I¢ ] }i ;y, i / _/_/' qq' (22)
+_ - + cot(7-7')+B' q,2+hyA.__sin(7_7,)

where p' = p(t'), 7' = 7(t'), A' = A(t'), and B'= B(t'). Eq. (22) is the result that we obtained

previously r).

The uncertainty relation is defined by

(Aq/Xp),,,, = [1(< mlq2l n > - < mlqln >2)(< mlp_ln > _ < mlpl n >2)1]x/2" (23)

With the help of Eq. (21), we can express Eq. (23) as
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4 The Minimum Uncertainty Function

The minimum value for n = 0 in Eq. (24) is larger than h/2 and thus the coherent state of our

system is not a minimum uncertainty state. To obtain minimum uncertainty state, we introduce

the new creation and annihilation operators defined by

b = _a + vat (25)

for a pair of c numbers _t, v obeying

i_l 2- Iv[ 2 = 1. (26)

The canonical transformation [Eq. (25)] which keeps the commutator invariant, is a unitary

transformation. The properties of the b and bt are the same as those of a and at s).

Performing the same procedures in Sec. 3, we can obtain the wave function for nth excited

states:

1 ,_t/2 1/4 _*--b'* n +

xexp{ 2hAl#q2-vl _ [__i[(B__)lg_vl2+i(#v. vg.).q]} (27)

Substituting Eq. (26) into Eq. (24) and evaluating the diagonal element, the uncertainty relation

for (n, n) states can be obtained:

(AqAp),,n : (n+l) h 1+ (B-_)[#-vl2+i(#v'-vi_ ") (28)

From Eq. (27) we can also find the condition of # and v for the minimum uncertainty

k
(29)_- v"_-i

where

and

1

_,- k_v_-__l¢ ° (30)

k=
2B

_-_ _-_- (32)

(31)

,_--_ B- _<a 2_<_-_ B- +4. (33)

Here, k is real and positive, and a must have the same sign of ¼(B- _). We can confirm that

the minimum uncertainty is a function of one continuous parameter in the finite region.
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5 Summary

Introducing the quadratic Hamiltonian system given .in Eq. (1), we have derived the classical

invariant quantity with an auxiliary equation as the classical equation of motion. With the use

of this invariant, we can distinguish whether or not the system is bound. We transformed the

invariant into an operator in the replacement of the creation and annihilation operator [Eq. (14)]

and then evaluated the corresponding eigenfunction and eigenvMues. However, this eigenfunction

is not the SchrSdinger solution of the system. Though we obtain the exact wave function of the

system [Eq. (21)] and propagator [Eq. (22)] the minimum uncertainty constructed by this wave

function is larger than hi2 and thus the coherent states of the system is not minimum uncertainty

state. To obtain the minimum uncertainty we introduce the canonical transformation, which keeps

the commutator invariant. Through this unitary transformation we obtained the eigenfunction

and minimum uncertainty state of the system.
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